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A recurrent problem in materials science is the prediction of the percolation threshold of suspensions
and composites containing complex-shaped constituents. We consider an idealized material built up
from freely overlapping objects randomly placed in a matrix, and numerically compute the geometrical
percolation threshold p, where the objects first form a continuous phase. Ellipsoids of revolution, rang-
ing from the extreme oblate limit of platelike particles to the extreme prolate limit of needlelike parti-
cles, are used to study the influence of object shape on the value of p.. The reciprocal threshold 1/p,. (p,
equals the critical volume fraction occupied by the overlapping ellipsoids) is found to scale linearly with
the ratio of the larger ellipsoid dimension to the smaller dimension in both the needle and plate limits.
Ratios of the estimates of p, are taken with other important functionals of object shape (surface area,
mean radius of curvature, radius of gyration, electrostatic capacity, excluded volume, and intrinsic con-
ductivity) in an attempt to obtain a universal description of p.. Unfortunately, none of the possibilities
considered proves to be invariant over the entire shape range, so that p, appears to be a rather unique
functional of object shape. It is conjectured, based on the numerical evidence, that 1/p, is minimal for a
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sphere of all objects having a finite volume.

PACS number(s): 82.70.Kj, 64.60.Ak, 81.35.+k

I. INTRODUCTION

An important problem in describing the transport
properties of random multiphase materials is the predic-
tion of percolation thresholds as a function of volume
fraction [1,2], interparticle interaction [3], shape [4-8],
and orientation of the component phases or particles of
the random material [9]. In many practical applications,
the structure of composite materials evolves in time by
chemical reaction so that the percolation transition
occurs after an “ageing time” (e.g., cement-based materi-
als, gels) [10-16]. These applications motivate further
study of ordinary geometrical percolation theory, which
provides insights into these kinds of complex kinetic pro-
cesses.

An idealized model of percolation is that of completely
permeable objects, whose free overlap as more and more
objects are randomly added to a matrix eventually results
in a geometrically connected phase. There are important
materials science applications of this idealized model.
For example, we could imagine a material that develops
multiple cracks, which eventually percolate geometrical-
ly. Since cracks can interpenetrate, the percolation mod-
el of randomly overlapping objects is physically appropri-
ate. A second example is the random growth of a micro-
structure such that an isolated phase becomes geometri-
cally continuous or a continuous phase becomes geome-
trically isolated. Particular realizations of this random
growth include the disconnection of the pore phase in
sintering ceramic powders and hydrating cement-based
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materials [15,17], and the liquid-to-solid transition in
sol-gel materials and cement-based materials [10,15].
The gradual buildup of a connected phase via overlap of
permeable particles, although idealized, is similar to these
examples of chemical growth in real materials.

Ideas from percolation theory are commonly applied to
the properties of suspensions and composites of impene-
trable particles, where a ‘percolation threshold” is
identified with the asymptotic variation of some material
property P near a characteristic concentration ¢*,

P~g*—g|72, ()

where ¢ is the volume fraction of the suspended ‘“‘parti-
cles” and & is a “critical exponent™ describing the often
rapid variation of P near the threshold concentration ¢*.
Although this phenomenological approach to describing
the properties P of complex random materials is often
successful in summarizing experimental observations, the
identification of the percolation threshold ¢*, obtained by
fitting experimental data to Eq. (1), with the geometrical
threshold p, should be made with caution. Even in the
well-understood case of the conductivity of a suspension
of particles [18,19], there is only a simple relation be-
tween the apparent percolation threshold ¢* and p, in
the limit where the suspended particles have conductivi-
ties extremely different from the suspending medium.
Otherwise, when the ratio of the particle and medium
conductivities is not as large, the experimental estimate
¢* for the conductivity percolation threshold can differ
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from the geometrical quantity p.. The use of Eq. (1) for
other properties where theory is more limited, is evident-
ly even more suspect, but the practical utility of this ap-
proach is undeniable. These concentration thresholds are
often reported in the physical literature and the estima-
tion of these parameters is a matter of practical interest.

Equation (1) is often used to successfully describe the
electrical and thermal conductivity [6,20-22], dielectric
constant [23], and shear modulus [5] of composites, the
permeability of porous media [24], and transport proper-
ties, such as the viscosity of fluid suspensions of rigid par-
ticles [25-27]. It is known that ¢* varies significantly
with particle asymmetry [25,26] and qualitatively similar
variations of ¢* with shape are found for these various
transport properties. This phenomenology suggests that
the dependence of p, on particle shape should give some
insight into observed variations of ¢*. This possibility
remains to be checked through more quantitative com-
parisons between ¢* and p, obtained from numerical cal-
culations where the mixture geometry is precisely
specified.

In the present paper, we compute the geometrical per-
colation threshold p, in a model-two-phase material in
which objects are randomly placed without regard to
overlap. The value of p, is defined by a transition in the
connectivity of the randomly placed objects from a
disconnected to a connected state. In general, p, is much
easier to compute than ¢* since determination of the
quantities in Eq. (1) requires a full solution of the ap-
propriate hydrodynamic equations (Laplace, Navier-
Stokes, etc.) for a very complicated geometry and general
boundary conditions.

There have been many previous efforts to obtain the
variation of p, with particle asymmetry [28-38].
Significant progress especially has been made in two di-
mensions where a fairly general understanding of p. in
terms of the leading order virial coefficient for the electri-
cal conductivity has been obtained for overlapping ellipti-
cal particles and particles of a more general shape [29].
Results in three dimensions (3D) are more fragmentary.
The present paper is intended to fill this gap by perform-
ing numerical computations of p, over a wide range of as-
pect ratios, from the extreme oblate limit to the extreme
prolate limit.

To obtain further insight into the shape dependence of
p. for nonspherical particles we follow the previous suc-
cessful 2D approach [29] and theoretical arguments by
Balberg [28] and others that attempt to relate p, to other
more analytically and numerically tractable measures of
object shape. Balberg [38], for example, has derived
rough bounds of p, for different objects in terms of the
“excluded volume” between different objects. From this
work and the well-known contribution of Scher and Zal-
len [39], which phenomenologically relates the on-lattice
and off-lattice site percolation thresholds of nonoverlap-
ping spherical particles, we seek an “invariant” ratio of
p. and other particle properties of the ellipsoid that
universally summarizes the shape dependence of p, for el-
lipsoids and ultimately for particles having more general
shapes. We approach this goal by calculating explicitly a

large range of functionals of particle shape for ellipsoids
(surface area, mean radius of curvature, radius of gyra-
tion, electrostatic capacity, excluded volume, and intrin-
sic conductivity) and forming ratios with p,.

In Sec. II, we begin our investigation with a review of
important functionals of particle shape and explicit ana-
lytic results for ellipsoidal particles that are scattered
throughout the mathematical and physical literature.
Section III develops a rough perturbative estimate of the
percolation threshold ¢* for the conductivity and reviews
past efforts to describe the shape dependence of p,
through shape functionals. We proceed to the numerical
determination of p, for ellipsoids and a brief description
of the algorithm used in Sec. IV. Numerical results for p,
are given separately in Sec. V and fitted by a Padé-type
approximant. We finally return to a discussion of these
numerical results in terms of shape functionals.

II. BASIC FUNCTIONALS OF OBJECT SHAPE
AND THEIR EVALUATION FOR ELLIPSOIDS
OF REVOLUTION

Shape functionals play a large role in many physical
applications [40—42], and have been subject to extensive
mathematical investigation [40]. In the present paper,
these functionals of particle shape are normalized so as to
be independent of the size of the particle and to equal
unity for a sphere. The shape functionals considered in
this paper include the following: the surface area, the
mean radius of curvature, the radius of gyration, the elec-
trostatic capacity, the excluded volume (binary cluster in-
tegral for purely repulsive particles in the theory of non-
ideal gases), and the intrinsic conductivity for both insu-
lating and superconducting objects in a normal conduct-
ing matrix. For ellipsoids of revolution, these are all
given by simple analytic formulas. To make these shape
functionals equal to unity for a sphere and independent of
absolute particle size, we normalize them by the same
property defined for a sphere with equal volume to the el-
lipsoid, i.e., Vg, =(4m/3 )r3=(47/3)ab? where a is the
length of the symmetry axis, b is the length of each axis
perpendicular to the symmetry axis, and a /b is the aspect
ratio of the ellipsoid.

A striking qualitative feature of the shape functionals
we investigate are the general ‘“‘isoperimetric relations”
[40] that show that these functionals tend to be mini-
mized for objects having more symmetric shapes, with
absolute minima existing for the sphere, the most sym-
metric object having a finite volume. The explicit illus-
tration of these famous isoperimetric inequalities for el-
lipsoidal particles and for a variety of properties should
have independent interest for the insight it provides into
the interrelation between important particle properties.

A. Surface area

The surface area of an ellipsoid of revolution is well
known [43]. Normalized by the surface area of a sphere
with equal volume, the surface area A becomes
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The surface area of a triaxial ellipsoid involves a more complicated closed form involving elliptic functions [44,45]. It is
a classical result from mathematical antiquity that of all objects of a given volume, the sphere has the minimum surface
area and that in 2D, of all regions of finite area, the circle has the minimum perimeter [40]. Such inequalities for gen-
eral shape functionals have then come to be called “isoperimetric.” The reciprocal of the quantities defined in Eq. (2)
and (3) are also widely known as the ““sphericity” of a particle [46—48].

B. Mean radius of curvature

The mean radius of curvature of an object is just the average radius of the local surface curvature, integrated over the
entire surface. Normalized by the radius of a sphere with equal volume (the mean radius of curvature of a sphere is just
the spherical radius), the mean radius of curvature R for an ellipsoid of revolution becomes [43],
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The value of R for the triaxial ellipsoid has also been
worked out [49].

C. Radius of gyration

The radius of gyration R, of a triaxial ellipsoid is sim-
ply [50]

R}=1[a*>+b*+c?], 6)

where a,b,c are the three semiaxis lengths. Calculating
R, for an ellipsoid of revolution, ¢ =b, and normalizing
by R, for the sphere of equal volume gives
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D. Electrostatic capacity

The electrostatic capacity of an object is defined by the
following problem. Assume the object is conducting and
charged so that the surface has a constant (unit) potential
and the potential outside the object decays to zero at
infinite distance. The capacity can then be defined in
terms of the asymptotic decay at large distances of the
solution to Laplace’s equation in the space surrounding
the object [40—42]. Units are chosen such that a sphere
of radius R has a capacitance C=R [51]. The problem of
the capacitance of an ellipsoid of revolution has also been
solved [52]. Normalized by the capacitance of a sphere
with equal volume, the capacitance of an ellipsoid of re-
volution equals

2
(prolate) (4)

(oblate) . (5)
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where the aspect ratio x =a /b. Hubbard and Douglas
[51] have recently shown that the Stokes friction of a
Brownian particle is proportional to C to a very good ap-
proximation, and that capacity is related to many physi-
cal processes and properties relating to the origin of
Laplace’s equation in describing heat, electrical, and fluid
flow [40-42]. This relation between the translational
friction and capacity is exact for ellipsoids [51]. It is
rigorously known that C is a minimum for a sphere for all
objects having a finite volume [40].

E. Excluded volume

The excluded volume for a given object is defined as
that volume surrounding and including a given object,
which is excluded to another object [53,54]. A similar
definition of the excluded area holds in 2D. This func-
tional is always defined for a pair of objects. The ‘“‘ex-
cluded volume” terminology comes from the statistical
mechanics of gases, where this functional arises in the
leading order concentration expansion (virial expansion)
for the pressure in the case of gas particles that repel
each other with a hard-core volume exclusion [43].

Isihara [43] gives a general expression for the excluded
volume of two convex objects, involving the surface area
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and mean radius of curvature of each, and then derives
the explicit formula for ellipsoids of revolution. The
elegant and general form for (V,,) for two convex ob-
jects, denoted 1 and 2, is expressed in terms of their sur-
face areas F;, the average radii of curvature on their sur-
faces R;, and their individual volumes V;. For convex
objects the general formula is

(V. )=V,+V,+(A4,R,+ A,R,)/4r . (10)

Isihara [43] has proven that a sphere minimizes the ex-
cluded volume of all convex bodies of finite volume. One
should note that when the two particles are identical, as
below, the usual convention is to use one half the quanti-
ty shown in Eq. (10). Balberg does not normalize by this
factor of one half in his definition of the excluded volume
(V.. ) [28,38]. The excluded volume for ellipsoids of re-
volution is then obtained by inserting the expressions for
A and R, from Egs. (2)—(5). The value of { V,, ) normal-
ized by the excluded volume for a sphere with equal
volume is invariant to this factor of 1 and results in the
final expression for ellipsoids of revolution:

_1,3 (1—€é). |1+e
Vexd=g+1g7 |1+ 1n'1_€ I
J— i1
x [Vi—e+snte) (a1

where z =a /b for prolate ellipsoids, z =5 /a for oblate el-
lipsoids, and €2=1—1/(z2) [55].

F. Intrinsic conductivity

The conductivity of random two-phase media is a
property that has traditionally been associated with per-
colation phenomena [56]. Exact relations are known be-
tween the percolation threshold of the conductivity and
P, [18,19] in limiting situations (see below). The virial ex-
pansion for the conductivity can be developed much like
the pressure of a nonideal gas in statistical mechanics to
yield the expansion in the particle volume fraction ¢ [57],

Oeff - 2
—=1+4+[o]¢+O0($*)+ --- , (12)
m
where o0, is the conductivity of the pure medium
without any particles and [0 ] is defined as the intrinsic
conductivity [58]. Two special limits of the intrinsic con-
ductivity are [o], for superconducting particles and
[o]y for insulating inclusions [58]. The magnitude of
these shape functionals is minimized by the sphere for all
objects having a finite volume [40,59]. Notably, in 2D,
the relation —[o ],=[0 ], holds for all shapes [60], but
this relation does not extend to other dimensionalities. In
a separate paper [58)], we have shown that in 3D, [0 ], is
proportional (to within 5%) to the intrinsic viscosity
(defined similarly to the intrinsic conductivity but for the
viscosity of suspensions of rigid particles in a fluid) for a
wide range of particle shapes, so that this important
shape functional is also implicitly considered in our dis-
cussion of [0], here. In 2D, [o], is conjectured to
equal the intrinsic viscosity [58].
For ellipsoids of revolution, the intrinsic conductivity
for superconducting inclusions [0 ], is given by

(o], =L 1+3L
9 L(O-L)’

where L is a depolarization factor [61],

(13)
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and € is the eccentricity.
The intrinsic conductivity for insulating inclusions
[0 ]o can be similarly expressed in terms of L,

[o]o= 2 (5—-3L)

® 9a-Ly"’
For a sphere, Egs. (13) and (16) reduce to the well-known
results of Maxwell, [0'],, =3 and [0 ],= —3/2 [58].

(16)

G. Asymptotic limits of shape functionals

In the extreme prolate limit, the aspect ratio a/b
diverges, while in the extreme oblate limit, the inverse as-

pect ratio b /a diverges. In these limits, the above shape
functions reduce to the following limiting forms:

(a/b)*

In(a /b) (prolate)

[o0]e— (17)
— (oblate),
a
% (prolate)

—[o)o— (18)
4 b (oblate) ,
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Figure 1 shows a graphical comparison of the shape func-
tionals described in Secs. IIA-IIF. We observe the
widely different variation of these functionals with parti-
cle aspect ratio. The very different magnitudes of [0 ],
and —[o ], for needlelike particles is especially notable.
It is also observed that despite the many differences in the
qualitative variation of these functionals with particle
asymmetry, all these properties exhibit absolute minima
for the sphere. In many of the cases presented, this result

o

Shape functionals

" PR P PPN PR E
Z 5] G T

10
Aspect ratio

FIG. 1. Various shape functionals (defined in the text) plot-
ted vs aspect ratio for ellipsoids of revolution. Notice that the
minimum occurs in each case for the sphere.

has been proved for all objects of finite fixed volume, as
was indicated above.

III. ESTIMATION OF PERCOLATION THRESHOLDS
USING SHAPE FUNCTIONALS

. A natural method for obtaining an estimate of the per-
colation point for conduction problems involving a
second phase of randomly inserted objects can be
developed by considering the change in the electrical con-
ductivity of a material upon adding a small concentration
of objects into the matrix which are “insulating” (much
less conducting than the suspending matrix) or ‘“super-
conducting” (much more conducting than the suspending
matrix). The particles are positioned at random locations
and with random orientation so that the effective conduc-
tivity of the medium o . is a scalar that is invariant under
rotation of the macroscopic material as a whole. An esti-
mate of the conductive percolation threshold can then be
obtained from a simple perturbative criterion [62]. A
large variation of the composite conductivity o . might
be expected when the leading order perturbation in Eq.
(12) is on the order of unity,

[olp~1. (24)

This perturbative condition [62] defines an order of mag-
nitude estimate of a critical concentration at which the
property o .4 should become rapidly varying, indicative of
some kind of “perturbation threshold” ¢* as was dis-
cussed in Sec. I. For perfectly conducting or insulating
particles, this critical concentration can be simply
identified with a geometrical percolation threshold
[18,19].

Previous percolation studies in 2D [29] for elliptical
particles and particles of other shapes have indeed shown
a nearly shape-independent relation between n_. for
geometric percolation and [o ], that is more precise than
estimates based on the excluded volume concept. For
overlapping objects we recall that the average volume
fraction occupied ¢ by objects of general shape is related
to the particle volume ¥V, (or the area 4, in 2D) and the

P P
number of particles per unit volume as [29]
p=1—c " 25)

as opposed to impenetrable particles where ¢=nV,. In
2D, it has been shown that the critical number density »,
for geometric percolation times [o ], equals

n.Aylo],~2.2. (26)

In the limit of highly anisotropic particles, where n, 4, is
very small, we have n. 4, ~¢, as in nonoverlapping par-
ticles. Equation (26) thus accords qualitatively with ex-
pectations from Eq. (24). We note that, recently, the
product 4,[o ], has been shown to exactly equal [58]

A,[o],=27C}f 27

for particles of general shape (D =2), where C; is the

“transfinite diameter” or “logarithmic capacity” [58].
The extension of Eq. (24) to 3D is not obvious [63].

Since [0], and [0 ], generally vary quite differently with
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particle anistropy in 3D, as opposed to being equal in
magnitude in 2D, we are led to expect different conduc-
tivity percolation transitions from Eq. (24) depending on
whether the anisotropic particles are insulating or super-
conducting. Such separate transitions are, in fact, ob-
tained for the transition in conductivity. Consider the
example of adding spherical overlapping objects to a con-
ducting matrix. If the spheres are superconducting, the
composite conductivity diverges when the spheres per-
colate at a volume fraction of 0.29 [64]. If the spheres are
insulating, the resistivity of the composite diverges at a
sphere volume fraction of 0.968, the point at which the
matrix becomes disconnected [65].

We also remark that a relation similar to Eq. (24) has
been suggested involving ( ¥, ) that is applicable to 3D.
A virial expansion of the pair connectedness function for
overlapping objects naturally leads to the low-density ap-
proximation [66] [compare with Eq. (24)]

n AV, )=1, (28)

which has been predicted to become asymptotically exact
in the needle limit [66]. This approximation was intro-
duced heuristically in earlier work by Balberg et al. [67].
More recently, Balberg [38] has argued that the constant
in Eq. (28) is more generally on the order of unity, and he
gives the rough bounds,

0.7<n V., )<2.8, (29)

which include the estimate of Eq. (28). Evidently,
n.{ Ve ) is not a true invariant, but this ratio does seem
to capture the main trends in the dependence of the per-
colation threshold on particle shape for overlapping par-
ticles. In 2D this relation becomes [38]

3.2<n, (A, ) <4.5. 30)

These shape functionals and bounds on the percolation
threshold provide a point of reference for discussing our
computations of ¢°.

IV. PERCOLATION ALGORITHM

In any simulation study of the percolation of randomly
placed, overlapping objects, there are three pieces of in-
formation that must be known: (1) the position and
shape of each object, (2) which, if any, objects overlap
each other, and (3) does a connected path composed of
overlapping objects exist through the unit cell of the
simulation.

The first piece of information, the position and shape
of an object, can be stored in several ways. The objects
can be stored digitally, in terms of occupied pixels in a di-
gital image [29], which requires a large amount of com-
puter memory, depending, of course, on the resolution
with which each shape is represented. A second way,
which is used in this simulation study, is, for an Euclide-
an object, to store the object geometrically, as a set of
Cartesian coordinates for the location and orientation of
the particle and sufficient numbers to describe the shape
[68]. The lengths and orientations of the three semiaxes
and the position of its center completely describe a triaxi-

al ellipsoid, for example. In this paper, we consider ellip-
soids of revolution, whose shape can also be expressed
geometrically. For very oblate or prolate objects in 3D,
digital image methods do not have sufficient resolution at
the present time, due to computer memory limitations, to
give accurate percolation thresholds. We examine the
largest range in aspect ratio that is compatible with our
computational resources. Periodic boundary conditions
were also employed to minimize finite size effects.

The second piece of information that must be known is
whether two given objects overlap or touch each other.
This is carried out via a contact function. For Euclidean
objects, a function can be computed that unambiguously
tells if the two objects overlap each other at all, given the
centers, orientations, and sizes of the pair of objects.
Such a contact function has been worked out for ellip-
soids of revolution, for the purposes of carrying out
Monte Carlo simulations of hard-core ellipsoid gas prob-
lems [69]. Such an algorithm would be very inefficient if
every object had to be compared to every other object, so
a binning system is used to subdivide the computational
cell. To check for overlaps of a given object with other
objects then requires only checking the contents of a lim-
ited number of bins.

To test the accuracy of our implementation of the con-
tact function described in Ref. [69], we used the algo-
rithm to numerically compute the excluded volume of
pairs of identical ellipsoids of various aspect ratios. To
do this, we placed a single ellipsoid, oriented along the x
axis, in a box, and repeatedly placed a second, identical
ellipsoid in the box, with a random center and orienta-
tion. Count was kept of those times when the two parti-
cles overlapped, as determined numerically by the over-
lap function. After typically one million trials, the frac-
tion of the trials that resulted in an overlap times the
volume of the box was the excluded volume. Figure 2
shows a graph of the numerically determined excluded
volume plotted vs the exact excluded volume [see Eq.
(11)], for oblate and prolate ellipsoids of revolution. The
dashed line is the line of equality.

Finally, overall connectivity must be assessed. Before
the objects are percolated, a cluster list is maintained,
keeping track of how many distinct clusters of objects ex-
ist and which objects are in each cluster. If there are two
objects in a cluster, one that touches the top z surface of
the computational cell and the other that touches the
bottom z surface, then percolation has been achieved.
Determination of whether or not an object touches one of
the surfaces of the unit cell is carried out using a function
that for a given object tells the maximum and minimum
X, ¥, and z points on the object. For a triaxial ellipsoid
centered at (xq,y,2¢), With semiaxis lengths a, b, and c,
and unit vectors u, v, and w along the a, b, and ¢ axes, re-
spectively, the minimum and maximum x, y, and z points
on the surface of the ellipsoid (x,,,y,,,2,, ) are given by

X =xot[(auy, )2+ (bv, )2+ (cw, )*1V?, (31)
Ym =VoE[(au, )+ (bv, )+ (cw,)*]'*, (32)
z,, =zot[(au, )*+(bv, *+(cw, *]'? . (33)
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FIG. 2. Comparison between excluded volume, determined
numerically, and analytical formula [Eq. (11)] for prolate and
oblate ellipsoids of revolution. The dashed line is the line of

equality.

V. RESULTS AND DISCUSSION

Table I gives the geometric and percolation data for el-
lipsoids of revolution whose aspect ratio a /b spanned a
range of six orders of magnitude (1,/2000-500). Each re-
sult is the average of at least five realizations, although
the number of particles at percolation did not vary more
than a few percent between realizations. The number of
particles at percolation was recorded (n.), and the
volume fraction of particles at percolation (p,) was then

TABLE 1. Percolation threshold and geometrical data for
randomly oriented overlapping ellipsoids of revolution, placed
in a cubic cell of unit edge length.

Aspect
ratio a b n. D
1/2000 0.000012 0.024 22005 0.000 637
1/1000 0.000024 0.024 22028 0.001 275
1/100 0.000 24 0.024 21691 0.01248
1710 0.002 5 0.025 17089 0.1058
1/8 0.0030 0.024 18637 0.1262
1/5 0.004 4 0.022 21659 0.1757
174 0.0055 0.022 20046 0.2003
1/3 0.0070 0.021 20103 0.2289
172 0.010 0.020 18209 0.2629
3/4 0.015 0.020 13243 0.2831
1 0.025 0.025 5134 0.2854
372 0.030 0.0200 6521 0.2795
2 0.020 0.0100 36235 0.2618
3 0.030 0.0100 20219 0.2244
4 0.040 0.0100 12581 0.1901
5 0.040 0.0080 16557 0.1627
10 0.050 0.0050 17 389 0.08703
20 0.060 0.0030 18 740 0.041 50
30 0.060 0.0020 26679 0.026 46
50 0.060 0.0012 41827 0.01502
100 0.060 0.000 6 77069 0.006 949
200 0.060 0.0003 141458 0.003 195
300 0.060 0.0002 204 373 0.002 052
500 0.060 0.000 12 333258 0.001 205

825

calculated via Eq. (25). For most of the shapes studied,
the actual size of the particle, in relation to the unit edge
length periodic computational cell used, was adjusted so
that about 20000 particles were present at percolation.
The longest dimension of the particles was kept to less
than one tenth of the box size to avoid size scaling prob-
lems [70]. For the very prolate particles, this forced the
number of particles at percolation to increase sharply,
thus practically limiting the computations to a maximum
aspect ratio of 500.

Figure 3 shows the inverse of p, plotted against the as-
pect ratio a /b. In the extreme oblate limit, it is clear
that 1/p, scales linearly in the inverse of the aspect ratio,
as can also be seen in Table I. In the extreme prolate lim-
it, 1/p, seems to also scale linearly in the aspect ratio, al-
though it would be necessary to go an order of magnitude
further in aspect ratio in order to rule out any small slow-
ly varying nonlinear terms. In these limits, we can write
the asymptotic forms approximately as

0.6

(prolate)

(34)

De—
a

b (oblate) .

1.27[

It is interesting to note that the numerical prefactors
differ by close to a factor of 2 in these very different lim-
its. Qualitatively, we observe that 1/p, is minimized for
spherical particles. The data strongly suggests a new iso-
perimetric theorem: Of all objects of a given volume, the
sphere has the maximum percolation threshold p, for
overlapping objects.
The solid line in Fig. 3 is a Padé-type approximant,

h+fx+gx3?+ex?+dx3

P(x)= ) (35)

sx +x?

10° e et sl il
10 10 10 10 .10
Aspect ratio

FIG. 3. Inverse of the critical volume fraction for percolation
(1/p.) plotted vs aspect ratio of ellipsoids of revolution. The
solid line is a Padé-type approximant described in the text. It is
fit to both asymptotic limits, the value of 1/p. for the sphere,
and is forced to have zero slope at a /b =1.
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where x =a /b, the aspect ratio of the ellipsoids and P(x)
is fit to the reciprocal of p,.. Five of the six parameters
are fit to the asymptotic behavior of the curve (two
slopes, two intercepts) in the extreme prolate and oblate
limits, and the known value of 1/p, for the sphere. The
sixth parameter is used to force the slope of P(x) to be
zero for the sphere (a/b=1), since the minimum value
of 1/p, was found at this point, and we suspect the above
theorem to be true. We call the quantity P(x) a “Padé-
type” approximant, since usually Padé approximants
only contain integer powers of x [71]. We found that a
fractional power was necessary in order to match the
data around a /b =1. The Padé approximant fits the data
extremely well, using the following values: A =7.742,
f=14.61,g=12.33,¢c=1.763,d =1.658, and s =9.875.

After generating the basic percolation data, in light of
the perturbative criterion summarized in Eq. (24), it then
seems natural to attempt to find some combination of
shape functionals that approximates the variation in
1/p.. Of course, we ultimately seek a relation that is not
restricted to ellipsoidal particles, such as Eq. (26), which
appears to hold quite generally in 2D. We search for this
relation in terms of finding a shape functional whose
product with p_ is a constant, since the value of p,. goes to
zero in the oblate and prolate limits, while all the shape
functionals displayed in Fig. 1 diverge in these limits, so
that the product of the two has a chance of being invari-
ant.

To connect with the extensive work of Balberg and co-
workers, we first present a graph of n,, normalized by
(V) for that particular shape so as to have a dimen-
sionless quantity, vs aspect ratio in Fig. 4. Equation (11)
must be multiplied by the appropriate excluded volume
for a sphere of equal volume to the ellipsoid using the di-
mensions for the objects given in Table I. We have also
put back in the extra factor of 2 used by Balberg [28,38].
In Fig. 4, it is seen that the normalization with (¥, )
produces a clear invariant as the extreme oblate limit is

10.0 . - o : : T .
m]
8.0 + o) ncvex E
an, [o].
6.0 | 4
%5 m}
>
o
c
40| E
u]
00O O O O QIRI?QXD:ID o
20 e,
0+ o J
o 0o
OO0 o o o oI
0.0 . . . . . " . :
10* 10° 10°* 10" 10° 10’ 10° 10° 10*

Aspect ratio

FIG. 4. The critical number density of ellipsoids at percola-
tion normalized by the excluded volume of a single such ellip-
soid and by the intrinsic conductivity for superconducting parti-
cles, both plotted vs aspect ratio.

approached, and what appears to be a different constant
in the extreme prolate limit

1.5 (prolate)

nc< Vex>_) l30 (oblate) . (36)

We note that in the oblate (circular crack) limit, the value
of n (V. ) falls between the bounds found by Balberg
[38] in Egs. (29) and (30). Also, the constant in the pro-
late limit is not equal to unity, as was suggested in Eq.

(28). Using Eq. (21) for the asymptotic behavior of
(Ve ), we find that the asymptotic limit of n, is given by
5.1 |— | (prolate)
nV,— (37)
10.2 |5 | (oblate) .

The linear behavior shown in Fig. 3 and Eq. (34) puts re-
strictions on which shape factors have the potential to
form an invariant with the percolation threshold.

Figure 4 also shows the quantity n.[o ], plotted vs the
aspect ratio. This combination, analogous to that used
successfully to give an invariant in 2D, clearly fails in 3D
for prolate particles. This could have been predicted us-
ing the asymptotic relations in Sec. II G.

The results we have obtained in the disc limit disagrees
with a previous result of Charlaix [70], who found
n.{ V. )=1.80. Using the same normalization of {V,, ),
we find a substantially different value for this product of
n.{ V. »=3.0. Our value falls between the inequalities
found by Balberg [28,38] while Charlaix’s result does not.
The percolation threshold for discs embedded in a three-
dimensional space might intuitively be expected to have
properties that span the range between two and three di-
mensions [58], and this is exactly what our numerical re-
sults imply. In Fig. 4, we see that as the ellipsoids change
from discs (@ /b—0) to spheres (a/b=1) and then to
needles (a /b— o), the value of n,{V,,) changes from
3.0 to 2.7 to 1.5, with 2.8 and below marking the “3D”
range found by Balberg [28,38]. Study of Charlaix’s com-
putation of n, does not reveal any obvious mistakes, so
we are puzzled by the reason for this disagreement. Fig-
ure 4 shows that the variation of n.( ¥, ) with aspect ra-
tio is very small for all oblate shapes, and since
n.{ Ve )=2.7 and p.=0.29 are well known for spheres
[64], the estimate n,{ ¥, ) = 1.8 appears anomalous.

Studying the asymptotic limits given in Eq. (17)-(23),
we see that there are only four possible choices of shape
functions that have the correct or nearly correct prolate
and oblate limits: the excluded volume, the radius of
gyration R, times the surface area A4, the mean radius of
curvature R times the surface area A4, and
3=([o].[0]y)!”% All these quantities have the correct
asymptotic forms, except that = has a square root of the
logarithm of the aspect ratio in its denominator in the
prolate limit. The 1/p, data, as mentioned above, cannot
really rule out such a slight logarithmic dependence in
the prolate limit. We have also tried the quantities
Pclo]l, and n.V,[0],, because of their successful use in
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2D [29], but have found that [o'], and V,[o ], increase
much faster than does 1/p, and n, in the prolate limit.
These quantities do work very well, however, in the ob-
late limit, as can be seen from Eq. (17).

Figure 5 shows the result of multiplying 1/p, by the
above shape factors, plotted as a function of aspect ratio.
All these quantities do an equally good job of reducing
1/p. to a constant in the prolate and oblate limits, al-
though these constants are different by about a factor of
2, similar to the behavior seen in Fig. 4. Figure 5 clearly
shows that the excluded volume does no better than the
other shape factors. None of these shape functionals,
however, describe the data as well as the Padé approxi-
mant shown in Fig. 3.

We, therefore, conclude that the dependence of the
percolation threshold, even for the simple case of over-
lapping identical ellipsoidal objects, cannot be completely
described by simple single-particle shape functionals, al-
though the scaling of 1/p, in the extreme prolate and ob-
late limits can be correctly predicted by several such
functions and combinations of functions. It is interesting
to note that the intrinsic conductivity for superconduct-
ing particles [0 ], in 3D fails in scaling p, or n. to an in-
variant, even though it worked extremely well in 2D.
The excluded volume, on the other hand, works about

0'80 MR ] MM | AL R ALLL, AL ALl | MELRALLL, | MR | MERRALLL | MELBAALL
L
0.60 |- @W -
o 8 g o
B o040 m) .
A TOSTho
O<R>A AAAg Q0
0.20 | OoR A Aggﬁ 4
Olo]
AV,
0‘00 -4 -t “““IG At “““I»Z At l“.“’~| A I““'O At .""I‘ At ““"IZ At .“u‘IS E— 4
10 10 10 10 10 10 10 10 10

Aspect ratio

FIG. 5. The critical volume fraction from Fig. 3, normalized
by four candidate shape factors that all give the correct scaling
with aspect ratio in the extreme oblate and prolate limits, plot-
ted vs aspect ratio.

the same, to within a factor of 2 or so, in both 2D and
3D. It is hoped that the data in this paper will serve to
test new mathematical theories for predicting percolation
thresholds based on “microstructural shape” quantities.
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